Grade 9

Trigonometry \& Quadratic Equations Exams Type Question.

7 (a) The diagram shows a right-angled triangle $A B C$ in which
$A B=5 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $\angle B A C=90^{\circ}$.

(i) Write down the value of $\tan A \hat{C} B$.

$$
\begin{equation*}
\text { Answer (a) (i) } \tan A \hat{C} B= \tag{1}
\end{equation*}
$$

(ii) Calculate the length of $B C$.
Answer (a) (ii)
(iii) Write down the value of $\cos A \hat{B} C$.

$$
\text { Answer (a) (iii) } \cos A \hat{B} C=
$$

\qquad
(iv) Find the area of the triangle $A B C$.

7 (b) One end of a rope is tied to the top of a vertical pole with the other end fixed to the ground at a distance of 50 m form the foot of the pole. It makes an angle of 66.4° with the ground. Calculate

(i) the height of the pole,
(ii) the length of the rope,
$\left[\sin 66.4^{\circ}=0.916^{\circ}, \quad \cos 66.4^{\circ}=0.400, \quad \tan 66.4^{\circ}=2.289\right]$
\qquad
\qquad m [2]

7 (b) From a motor-boat A at sea a boy looks at the top of a cliff BC 50 m away. It is given that $\angle \mathrm{ABC}=90^{\circ}$ and $\angle \mathrm{BAC}=40^{\circ}$.
$\left[\sin 40^{\circ}=0.643, \cos 40^{\circ}=0.766, \tan 40^{\circ}=0.839\right]$

(i) Using as much of the given information as necessary, find the height of the cliff.

Answer (b) (i) height = \qquad m [2]
(ii) The motor-boat moves x metres towards the cliff and finds that $\tan \mathrm{A}$ is now exactly 2 . Find x.
\qquad

8 (a) $A B C D$ is a rectangle with $A B=(x+5) \mathrm{cm}$ and $B C=(x+3) \mathrm{cm}$. The area of $A B C D$ is $35 \mathrm{~cm}^{2}$.

(i) Using the information given, form a quadratic equation in x.

> Answer: (a)(i)
(ii) Solve the equation obtained in part (i) above.

Answer: (a)(ii) $x=$ \qquad or $x=$ \qquad [3]
(iii) Hence, find the length of $A B$.

9 (a) $A B C D$ is a rectangle with $A B=(x+4) \mathrm{cm}$ and $B C=(x+3) \mathrm{cm}$. The area of the rectangle $A B C D$ is $30 \mathrm{~cm}^{2}$.

(i) Using the given information, form a quadratic equation in x in the form $a x^{2}+b x+c=0$, where a, b, and c are integers.

Answer (a) (i)
(ii) Hence, find the length $A B$ of the rectangle ABCD .

$$
\text { Answer (a) (ii) } A B=
$$

\qquad cm [2]
(iii) Form and simplify a linear expression in x that represents the perimeter of the rectangle $A B C D$.

