Grade 9

Trigonometry & Quadratic Equations Exams Type Question.

7 (a) The diagram shows a right-angled triangle ABC in which

AB = 5 cm, AC = 12 cm and $\angle BAC = 90^{\circ}$.

(i) Write down the value of tan AĈB.

Answer (a) (i)
$$\tan A\hat{C}B =$$
 [1]

(ii) Calculate the length of BC.

(iii) Write down the value of cos \hat{ABC} .

Answer (a) (iii) cos
$$\hat{ABC}$$
= [1]

(iv) Find the area of the triangle ABC.

One end of a rope is tied to the top of a vertical pole with the other end fixed to the ground at a distance of 50 m form the foot of the pole. It makes an angle of 66.4° with the ground.

(i) the height of the pole,

Calculate

(ii) the length of the rope,

$$[\sin 66.4^{\circ} = 0.916^{\circ}, \cos 66.4^{\circ} = 0.400, \tan 66.4^{\circ} = 2.289]$$

From a motor-boat A at sea a boy looks at the top of a cliff BC 50 m away. (b)

From a motor-boat A at sea a boy result is given that
$$\angle$$
 ABC = 90° and \angle BAC = 40°. It is given that \angle ABC = 90° and \angle BAC = 40°. [sin 40° = 0.643, cos 40° = 0.766, tan 40° = 0.839]

Using as much of the given information as necessary, find the height of the (i) cliff.

The motor-boat moves x metres towards the cliff and finds that tan A is now exactly 2. Find x.

Answer (b) (ii)
$$x =$$

8 (a) ABCD is a rectangle with AB = (x + 5) cm and BC = (x + 3) cm. The area of ABCD is 35 cm^2 .

(i) Using the information given, form a quadratic equation in x.

Answer: (a)(i)______[1]

(ii) Solve the equation obtained in part (i) above.

Answer: (a)(ii) $x = _______$ or $x = ________$ [3]

(iii) Hence, find the length of AB.

9 (a) ABCD is a rectangle with AB = (x + 4) cm and BC = (x + 3) cm. The area of the rectangle ABCD is 30 cm^2 .

(i) Using the given information, form a quadratic equation in x in the form $ax^2 + bx + c = 0$, where a, b, and c are integers.

(ii) Hence, find the length AB of the rectangle ABCD.

Answer (a) (ii)
$$AB =$$
____cm [2]

(iii) Form and simplify a linear expression in x that represents the perimeter of the rectangle ABCD.